The Heights of Green's Posets of Semigroups

Craig Miller

11/10/2023

Craig Miller

The Heights of Green's Posets of Semigroups

11/10/2023

< 6 k

Let S be a semigroup.

Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$ and \mathcal{J} on S are defined by

$$a\mathcal{L}b \Leftrightarrow S^{1}a = S^{1}b, \quad a\mathcal{R}b \Leftrightarrow aS^{1} = bS^{1}, \quad \mathcal{H} = \mathcal{L} \cap \mathcal{R},$$

 $\mathcal{D} = \mathcal{L} \lor \mathcal{R} (= \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}), \quad a\mathcal{J}b \Leftrightarrow S^{1}aS^{1} = S^{1}aS^{1}.$

For each Groop's relation \mathcal{K} we denote the \mathcal{K} close of a \subset S by \mathcal{K}

For each Green's relation \mathcal{K} , we denote the \mathcal{K} -class of $a \in S$ by K_a .

For $\mathcal{K} \in {\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{J}}$, there is a natural partial order on the set of \mathcal{K} -classes of S; e.g. for $\mathcal{K} = \mathcal{L}$,

$$L_a \leq L_b \Leftrightarrow S^1 a \subseteq S^1 b.$$

The \mathcal{K} -height of S, denoted by $H_{\mathcal{K}}(S)$, is the size of a maximum chain of \mathcal{K} -classes of S, if such a chain exists, or is infinite.

Example

Let S be the semigroup with multiplication table

The Heights of Green's Posets of Semigroups

Stability

S is **left stable** (resp. **right stable**) if \mathcal{L} -classes (resp. \mathcal{R} -classes) within the same \mathcal{J} -class are incomparable. *S* is **stable** if it is both left stable and right stable. $\mathcal{D} = \mathcal{J}$ in stable semigroups.

Lemma. If $H_{\mathcal{L}}(S) < \infty$ (resp. $H_{\mathcal{R}}(S) < \infty$) then *S* is left stable (resp. right stable).

S is *uniformly group-bound* if there exists some $n \in N$ such that for every $a \in S$ we have a^n belongs to a subgroup of *S*. (Uniformly) group-bound semigroups are stable.

Lemma. If $H_{\mathcal{H}}(S) < \infty$, then S is uniformly group-bound.

Proof. $H_a \ge H_{a^2} \ge H_{a^3} \ge \cdots$. Then $H_{a^n} = H_{a^{2n}}$ for some $n \le H_{\mathcal{H}}(S)$, and hence H_{a^n} is a group.

イロト 不得 トイヨト イヨト

ъ

If *S* is left stable, then $H_{\mathcal{H}}(S) \leq H_{\mathcal{R}}(S)$ and $H_{\mathcal{L}}(S) \leq H_{\mathcal{J}}(S)$. If *S* is right stable, then $H_{\mathcal{H}}(S) \leq H_{\mathcal{L}}(S)$ and $H_{\mathcal{R}}(S) \leq H_{\mathcal{J}}(S)$. Consequently, if *S* is stable, then

 $H_{\mathcal{H}}(S) \leq \min \left(H_{\mathcal{L}}(S), H_{\mathcal{R}}(S) \right) \quad \text{and} \quad \max \left(H_{\mathcal{L}}(S), H_{\mathcal{R}}(S) \right) \leq H_{\mathcal{J}}(S).$

There exist semigroups with \mathcal{L} -height 1 and infinite \mathcal{R} -height, and vice versa (e.g. left/right simple semigroups that are not completely simple).

If
$$H_{\mathcal{L}}(S) = 1$$
 (or $H_{\mathcal{R}}(S) = 1$), then $H_{\mathcal{J}}(S) = 1$.
If $H_{\mathcal{L}}(S) = 2$ (or $H_{\mathcal{R}}(S) = 2$) then $H_{\mathcal{J}}(S) \in \{2,3\}$.

There exist semigroups with \mathcal{L} -height 3 and infinite \mathcal{J} -height.

Bounds on the \mathcal{R} -height

Theorem. If $H_{\mathcal{L}}(S) = n < \infty$ and *S* is (right) stable, then $\lceil \ln(n+1) \rceil$

$$\left\lceil \frac{\ln(n+1)}{\ln 2} \right\rceil \le H_{\mathcal{R}}(S) \le 2^n - 1.$$

Construction. Let *S* be a semigroup with zero *z*. Let $\mathcal{U}(S) = S \cup \{x_s : s \in S^1\}$ (where $1 \notin S$). Define a multiplication on $\mathcal{U}(S)$, extending that on *S*, by

$$ax_s = x_s$$
, $x_sa = x_{sa}$ and $x_sx_t = x_z$

for all $a \in S$ and $s, t \in S^1$. Then $\mathcal{U}(S)$ is a semigroup with zero x_z .

Proposition. Letting U = U(S), we have $H_{\mathcal{L}}(U) = H_{\mathcal{L}}(S) + 1$ and $H_{\mathcal{R}}(U) = 2H_{\mathcal{R}}(S) + 1$.

Theorem. For every $n \in \mathbb{N}$, there exists a \mathcal{J} -trivial semigroup S of order $2^n - 1$ such that $H_{\mathcal{L}}(S) = n$ and $H_{\mathcal{R}}(S) = 2^n - 1$.

Example: $S = \mathcal{U}(\{e\})$

 $S = \mathcal{U}(\{e\})$ is the semigroup $\{e, a(=x_1), z(=x_e)\}$ with multiplication

$$e^2 = e$$
, $ea = a$, $ae = a^2 = zs = sz = z$ $(s \in S)$.

Example: $\mathcal{U}(S)$

Table: For some small natural numbers *n*, the range of possible values of $H_{\mathcal{R}}(S)$ for a stable semigroup *S* with $H_{\mathcal{L}}(S) = n$.

Theorem. If $2 \leq H_{\mathcal{L}}(S) < \infty$ and $2 \leq H_{\mathcal{R}}(S) < \infty$, then $H_{\mathcal{J}}(S) \leq H_{\mathcal{L}}(S) + H_{\mathcal{R}}(S) - 2$. Consequently, letting min $(H_{\mathcal{L}}(S), H_{\mathcal{R}}(S)) = n$, we have

 $H_{\mathcal{J}}(S) \leq 2^n + n - 3.$

く 同 ト く ヨ ト く ヨ ト -

Example

Let S be the semigroup with multiplication table

The Heights of Green's Posets of Semigroups

Corollary of previous results

For any semigroup *S*, the following are equivalent:

- $H_{\mathcal{L}}(S)$ and $H_{\mathcal{H}}(S)$ are finite;
- 2 $H_{\mathcal{L}}(S)$ is finite and S is uniformly group-bound;
- $H_{\mathcal{L}}(S)$ is finite and S is stable;
- $H_{\mathcal{L}}(S)$ is finite and S is right stable;
- $H_{\mathcal{L}}(S)$ and $H_{\mathcal{R}}(S)$ are finite;
- $H_{\mathcal{L}}(S), H_{\mathcal{R}}(S)$ and $H_{\mathcal{H}}(S)$ are finite;
- $H_{\mathcal{R}}(S)$ and $H_{\mathcal{H}}(S)$ are finite;
- **(a)** $H_{\mathcal{R}}(S)$ is finite and *S* is uniformly group-bound;
- $H_{\mathcal{R}}(S)$ is finite and S is stable;
- $H_{\mathcal{R}}(S)$ is finite and S is left stable.

Moreover, if any (and hence all) of the conditions (1)-(10) hold, then $H_{\mathcal{J}}(S)$ is finite.

Poset of idempotents

There is a partial order on the set *E* of idempotents of *S* given by $e \le f \Leftrightarrow e = ef = fe$.

We denote the height of the resulting poset by $H_E(S)$.

Lemma. $e \leq f \Leftrightarrow H_e \leq H_f$. Consequently, $H_E(S) \leq H_{\mathcal{H}}(S)$.

S is *regular* if $a \in aSa$ for all $a \in S$.

Proposition. If S is regular, then

$$H_{\mathcal{L}}(S) = H_{\mathcal{R}}(S) = H_{\mathcal{H}}(S) = H_{\mathcal{E}}(S).$$

Example. The bicyclic monoid $B = \langle a, b | ab = 1 \rangle$ has an infinite chain of idempotents $E = \{ba > b^2a^2 > b^3a^3 > \cdots\}$, so $H_E(B) = \infty$, but $H_{\mathcal{J}}(B) = 1$ (since *B* has a single \mathcal{J} -class).

Proposition. If *S* is regular and stable, then

$$H_{\mathcal{L}}(S) = H_{\mathcal{R}}(S) = H_{\mathcal{H}}(S) = H_{\mathcal{E}}(S) = H_{\mathcal{J}}(S).$$

Thanks for listening

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))